Make a Chair hv Paper Atsuya / Hige Yurie

Motive · Purpose · Precedent Study

We tried to find out if paper could hold a person up.

About the strength.... The strength mean vertical load that paper can support.

《Result》

mass(g)

3000

2500

2000

1500

1000

500 0 -

We found a column has enough

The Strength of a Column

We examined the strength of a sheet of paper of the size of B5.

We examined the change of strength as we change the number of column, the position of a column and the amount of paper per a column.

Preliminary experiment

«Purpose»

We research the strength of a column.

《Method》

Experiment 1

《Hypothesis》

Preliminary

experiment

《Result》

mass(g)

2500

2000

1500

1000

500

0

strength per one goes low.

《Consideration》

Preliminary experiment

«Purpose»

① We made columns which have 1.0cm overlap width.

2 We set up columns like Figure1 and hung weights at vertical.

③ We examined that the column which go like figure2.

We prepared four columns that use at the

The strength per a column is still same. In

The Strength of a Column

When the number of columns increased, the

Our Hypothesis is different from the Result

because the plate 1 is not firmly connected

with the column because of various sizes of

Experiment 1

Experiment1

other words the overall strenger goes high

overall in proportion to the number of column.

Preliminary experiment and examined the

change of strength per a column.

Figure 2

Experiment 2

《Purpose》

We examined the strength per one paper after we set four columns next to each other.

《Hypothesis》

If we make column with a shorter circumference, it goes high because the load is spread.

Preliminary experiment

《Result》

The strength per a column is stronger in the Preliminary experiment than Experiment 2. However, the strength per a paper is stronger in the experiment than the Preliminary experiment.

《Consideration》

Load was spread and the strength was high, so Hypothesis matched with Result.

=Previous Study=

strength to hold the weight of 1900a.

We examined the strength of each of the following structures respectively: an equilateral triangular prism, an equilateral quadrangular prism, an equilateral pentagonal prism, an equilateral hexagonal prism and column twice. As a result we realize a column is the strongest. Yamada Shino(power of paper)

we decided

this strength

is "criteria"

plate 1

plate 2

column

weights Figure 1

Experiment 3

«Purpose»

We examined the strength per a column that we used in the Experiment 1 when we change the position of columns.

«Hypothesis»

The strength per one column is still same even if the position of the column is changed.

《Result》

As a result of Experiment 3, we found the strength go high when columns next to each other.

《Consideration》

The reason for Hypothesis and Result are different by connecting columns each other, it is hard to transform columns.

each column まとめ

According to Experiment 1, Experiment 2 and Experiment 3, we discover the strongest column can hold the load of about 3000g.

Supposing human weigh seventy kilograms, we expected paper can hold a person up, by setting columns next to each other. Then size of chair is 28cm \times 28cm, so people can sit down it.

These experiments examined only vertical load. So we need to examine other power.

